jueves, 12 de enero de 2012

EL TIEMPO ES RELATIVO

El Tiempo Es Relativo

viernes, 18 de noviembre de 2011

ESTRUCTURA DE GRUPOS

AMALIE EMMY NOETHER
Galois y Ruffini introdujeron de forma independiente el concepto de grupo. En la primera mitad del siglo XIX, los resultados de la teoría de grupo jugaron un papel auxiliar, especialmente en la teoría de las ecuaciones algebraicas, formándose, predominantemente, la teoría de los grupos finitos. Posteriormente, ya en los años 50, en trabajos de Cayley y otros, comenzaron a aparecer definiciones abstractas más generales de grupo. Este proceso se aceleró desde el año 1870 con los trabajos de C. Jordan, quien hizo un resumen de los resultados de la teoría de grupos finitos en su aplicación a la teoría de números, teoría de funciones y geometría algebraica.
A finales de siglo, aparecieron las primeras aplicaciones de la teoría de grupo, resolviéndose, por ejemplo, el problema de la clasificación de todas las redes cristalinas espaciales gracias a los trabajos de E.S Fiedorov. Los grupos discretos finitos, a los que pertenecen los grupos de Fiedorov, obtuvieron extensión en la teoría de los espacios multidimensionales en relación con la teoría de los poliedros regulares en éstos. Posteriormente se planteó la investigación de los grupos infinitos, tanto discretos como continuos y también sobre la creación de un aparato de cálculo adaptado a las necesidades de la teoría de grupo. Los logros fundamentales sobre estas cuestiones pertenecen a los discípulos de C. Jordan, F. Klein y S. Lie. En la confluencia de los siglos XIX y XX la teoría de grupos se ramificó desmesuradamente, formando el núcleo del álgebra actual. Ella se compone de una serie de teorías altamente desarrolladas: los grupos finitos, los grupos discretos infinitos, los grupos continuos, entre ellos los grupos de Lie.
Los métodos teóricos de grupos penetraron en una serie de disciplinas matemáticas y sus aplicaciones. Los descubrimientos de De Broglie, Schrödinger, Dirac y otros, en la mecánica cuántica y en la teoría de la estructura de la materia mostraron que la física moderna debe apoyarse en la teoría de los grupos continuos, en particular en la teoría de la representación de grupos por operadores lineales, la teoría de los caracteres y otras elaboradas por Cartan, H. Weyl y otros científicos. Pasó medio siglo desde los trabajos de Gauss, Abel y Galois y el centro de gravedad en las investigaciones algebraicas se trasladó a la teoría de grupos, subgrupos, anillos, estructuras.
EVARISTE GALOIS
En el álgebra comenzó el periodo de las matemáticas modernas. Emmy Noether fue una matemática alemana de origen judío que realizó sus investigaciones en las primeras décadas del siglo XX. Mediante su primera especialización sobre invariantes algebraicos consiguió demostrar dos teoremas esenciales para la teoría de la relatividad que permitieron resolver el problema de la conservación de la energía. Su aportación más importante a la investigación matemática fueron sus resultados sobre la axiomatización y el desarrollo de la teoría algebraica de anillos, módulos, ideales, grupos con operadores, etc. En este contexto, que se llamó álgebra moderna, aplicó sus conocimientos sobre invariantes dando rigor y generalidad a la geometría algebraica. Sus investigaciones en álgebra no conmutativa destacan, sobre todo, por el carácter unificado y general que dio a los conocimientos acumulados durante décadas.
Sus publicaciones serían suficientes para valorar su decisiva contribución a las matemáticas, pero hay que considerar, además, que nunca le interesó mucho publicar y siempre permitió a sus colegas y a sus estudiantes desarrollar resultados interesantes a partir de las sugerencias que ella les hacía.
ALGO DE HOMOMORFISMO